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Abstract

A pore network model of drying with heat transfer is developed. The model is applied to study the influence of

surface tension gradients induced by thermal gradients on the phase distribution within a capillary porous medium. The

numerical simulations show that surface tension gradients can lead to invasion percolation in a destabilizing gradient

(IPDG) patterns or invasion percolation in a stabilizing gradient patterns depending on the sign of thermal gradient.

The surface tension gradient effect is shown to be significant for sufficiently weakly disordered porous media. The results

are summarized on a phase diagram delineating the various patterns that can be expected as functions of thermal

gradient and disorder parameter. This diagram is pertinent to situations where occupation probability gradients in-

duced by viscous or gravity effects are negligible.

The results also indicate the possibility of a somewhat paradoxical convective drying situation when thermal gra-

dients and disorder are such that a IPDG pattern develops. In this case, contrary to more conventional situations, it

may be much more efficient to blow an air colder than the porous medium initial temperature.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Drying of capillary porous media has been the sub-

ject of many studies (see for instance [1] and references

therein) and is still a challenging modelling problem.

This is not surprising if one considers that drying in-

volves complex transport processes, such as two-phase

flow with liquid–vapor phase change in porous media,

and that numerous aspects of drying are of interest

from a practical standpoint. For some materials, such as

wood for instance, the mechanical aspects (deformation,

shrinkage, fracturing) are of a great importance. For

foodstuffs, constraints linked to the final quality of the

product must be taken into account. For all products,

however, the most basic aspect of drying is the drying

kinetics, which in turn depends on the evolution of the

water distribution within the materials during drying.

Hence, one of the most basic aspects of drying is the

understanding of the phase distribution evolution and

the identification of the key-factors affecting this evolu-

tion. Recently, it has been shown that insights into this

aspect could be gained from pore network models (see

[2–4] and references therein). In those works, influence

of thermal gradients was ignored. Energy aspects are,

however, of uttermost importance in drying and dry-

ing situations where thermal effects are negligible are

clearly an exception. The objective of the present work is

therefore to shed light on the influence of the thermal

gradients that usually develop during drying. As in the

previous studies based on pore network models of dry-

ing, we investigate situations under relatively slow dry-

ing conditions, i.e. temperatures well below the boiling

temperature, so that development of total pressure gra-

dients in the gas phase can be ignored. To this end, a
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pore network model of drying including the computa-

tion of the temperature field has been developed. As in

the pore network studies mentioned before, invasion

percolation (IP) in a gradient (see [5] and references

therein) will be the appropriate theoretical framework

for analysing the results. As discussed in previous works

(e.g. [2,5]) the phase distribution under slow drying

conditions and in the absence of thermal gradient is

controlled by the interplay of capillary, viscous and

gravity forces. In the absence of significant gravity or

viscous effects, IP patterns are expected. As discussed in

[5], viscous effects are always stabilizing in slow drying

and therefore lead to patterns characteristic of invasion

in a stabilizing gradient (IPSG patterns). As shown in

[6], gravity effects can be destabilizing, i.e. leading to

patterns characteristic of invasion in a destabilizing

gradient (IPDG), or stabilizing, i.e. leading to invasion

percolation in a stabilizing gradient (IPSG) patterns,

depending on the orientation of gravity vector with re-

spect to the main direction of invasion. These various

patterns are summarised on the phase diagram shown in

Fig. 1. In this figure, Ca is the capillary number, which is

the ratio between viscous and capillary forces. B is the

bond number, ratio between gravity and capillary for-

ces. Ca is defined as Ca ¼ lv=c where v is a characteristic
liquid filtration velocity, l the liquid dynamic viscosity

and c the surface tension. B is defined as B ¼ qlga
2=c

where a is the lattice spacing, g the acceleration of gravity

and ql the liquid density. As explained in [5] or [6], the

diagram shown in Fig. 1 is obtained by comparing three

length scales, the sample length L, the length Lg which

characterizes the typical size of a front stabilized by

gravity and the length Lcap which characterizes the typical

size of a front stabilized by viscous effects. For two-

dimensional (2D) systems, Lg and Lcap scale as [5]

Lg /
B
R�

� ��0:52

; Lcap /
Ca
R�

� ��0:52

ð1Þ

where R� is a parameter that characterizes the disorder

of the porous medium, i.e. the width of the pore size

distribution (R� ¼ ð‘max=aÞ � ð‘min=aÞ where a is the lat-

tice spacing, ‘min the width of the narrowest bond and

‘max the width of the widest bond of the pore network).

As can be seen from Fig. 1, significant gravity or viscous

effects dramatically affect the invasion pattern and

thereby the drying rates. In this paper, we concentrate

on the IP domain (capillary fingering domain) and ex-

plore the various invasion patterns that can be obtained

in the absence of significant gravity or viscous effects,

when thermal gradients are present. For simplicity, the

simulations have been performed in 2D. However, the

main results obtained can be qualitatively extended to

three-dimensional (3D) systems.

Nomenclature

a lattice spacing (m)

Ca ¼ lv=c capillary number

B ¼ Dqga2=c bond number

D binary diffusion coefficient (m2/s)

e pore network thickness (m)

h mass transfer coefficient at the interface

K permeability (m2)

‘ bond width (m)

‘min minimum bond width (m)

‘max maximum bond width (m)

L sample size (m)

Lg characteristic length associated with gravity

effect (m)

Lcap characteristic length associated with viscous

effects (m)

LT characteristic length associated with thermal

gradient (m)

Mv vapor molecular weight (kg/kmol)

p occupation probability

P gas phase total pressure (Pa)

Pc capillary pressure (Pa)

Pcth threshold capillary pressure (Pa)

Pv vapor partial pressure (Pa)

Psat saturation vapor partial pressure (Pa)

Pv1 vapor partial pressure in the incident air (Pa)

r meniscus curvature radius (m)

R universal gas constant (J/kmol/K)

T temperature (�C)
v liquid characteristic velocity (m/s)

z spatial coordinate (m)

e porosity of porous medium

Dhvap enthalpy of vaporisation (J/kg)

c surface tension (N/m)

l liquid dynamic viscosity (Pl)

k thermal conductivity (W/m/�C)
ks solid phase thermal conductivity (W/m/�C)
kl liquid phase thermal conductivity (W/m/�C)
kv gas phase thermal conductivity (W/m/�C)
k�
l effective thermal conductivity of porous

medium saturated by the liquid phase (W/m/

�C)
k�
v effective thermal conductivity of porous

medium saturated by the gas phase (W/m/

�C)
q liquid phase density (kg/m3)

R disorder parameter (m)
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Before going into the details of the present study, it is

worth recalling that the influence of thermal gradients

on the moisture migration in non-saturated porous

media or during the drying of capillary porous media

has been the subject of numerous studies in the funda-

mentally different context of the continuum approach

to porous media. Here, we briefly review some of these

studies, restricting ourselves to drying with temperatures

well below the boiling point. Philip and de Vries [7] were

the first to establish theoretically that thermal gradients

could induce a moisture transport in liquid phase and in

gas phase. The mass flux in gas phase due to thermal

gradients was shown to be induced by the dependence of

the saturation vapor partial pressure on temperature

whereas the mass flux in liquid phase was shown to be a

consequence of the dependence of the capillary pressure

on temperature via the surface tension. Naturally, these

two effects are present in the pore network simulations

presented in this paper. In the present study, however,

we will essentially concentrate on the influence of tem-

perature gradients on the capillary effects and will not

analyse in detail the influence of the variation of the

saturation vapor partial pressure with temperature. This

latter aspect is discussed in detail in [8], for situations

where capillary effects dominate as well as for situations

where gravity effects are significant. Interestingly, the

pore network simulations presented in [8] indicate a

significant influence of the saturation vapor partial pres-

sure gradient (induced by the temperature gradient) on

the drying process, especially in the latter stages of

drying (not considered in the present paper that rather

focus on the stages where the liquid phase is not yet

completely broken up into liquid clusters of ‘‘finite’’

size). The influence of a surface tension gradient due to a

thermal gradient is not considered, however, in the study

by Huinink et al. [8].

On the experimental side, the theory of Philip and de

Vries was confirmed by the comprehensive experimental

study of Crausse [9]. The migration of moisture towards

cold zones due to thermal gradients was clearly dem-

onstrated. The data obtained by Crausse were used by

Recan [10] in a numerical study. As reported in the re-

view paper by Bories [11], the sensitivity study con-

ducted by Recan also confirmed the significant influence

of thermal gradients, at least for the material and the

conditions studied by Crausse. In this respect, it is worth

mentioning that the thermal gradients in Crausse�s study
were of the order of 1 �C/cm and that the porous ma-

terial was a sand with most of the grains in the range

100–125 lm, i.e. a material of narrow pore size distri-

bution (i.e. of weak disorder in the terminology of the

network approach presented below). The results of

Crausse and therefore the overall relevance of the Philip

and de Vries model was further confirmed by the study

of Rouger [12]. Here, it should be pointed out that the

initial moisture contents of the porous samples were

quite low in these experiments. In the present paper, we

investigate the quite different situation where the sample

is initially fully saturated and where viscous and gravity

effects have a negligible influence. As discussed above,

Fig. 1. Drying phase diagram in the absence of thermal gradient effects. L is the sample size. Lcap is the length over which the pressure

drop due to viscous effects is of the order of the capillary pressure. Lg is the length over which the pressure variation due to gravity

effects is of the order of the capillary pressure.
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this case leads to IP patterns and cannot be described

adequately within the framework of continuum model

owing to the occurrence of long range correlations in

the phase distribution near the percolation threshold.

In such a case, network approaches offer a much

more suitable framework. Also, it should be emphasised

that the general ability of continuum models to predict

quantitatively the evaporation flux can be considered as

poor. Hence the development of network models can be

regarded as an effort to improve our understanding of

the physics of drying, a (hopefully) necessary step to-

wards more predictive models.

2. Pore network model

The pore network model developed for the present

study is an extension of the model initially proposed by

Prat [13]. As in most pore network studies of drying, a

single component liquid is assumed (an exception is the

work of Freitas and Prat [14] on the evaporation of a

binary liquid). The gas phase is a binary mixture (vapor

of the liquidþ air, the vapor concentration being small

compared to the air concentration). Throughout this

paper, vapor will refer to the liquid vapor in the gas

phase whereas the air/vapor mixture forming the gas

phase will be simply termed the gas phase. As in most

models of drying well below the boiling temperature,

mass transfer in the gas phase is due to diffusion only.

Assuming relatively large pores, the Kelvin effect is ne-

glected. For simplicity, a perfectly wetting liquid is as-

sumed. The pore space is conceptualized as a network of

randomly sized pores (sites) joined by randomly sized

throats (bonds). We used a square lattice as depicted in

Fig. 2. Three edges of network are impervious (no mass

transfer at these boundaries). The vapor escapes through

the remaining open edge (top edge in Fig. 2). Initially,

the network is completely saturated by the liquid. In the

absence of thermal gradient, the drying algorithm for

the IP domain reads [13]

(1) Every liquid cluster present in the network is identi-

fied.

(2) The bond connected to the already invaded region

which has the lowest threshold capillary pressure is

identified for each cluster.

(3) The evaporation flux at the boundary of each cluster

is computed.

(4) For each cluster, the mass loss corresponding to the

evaporation flux determined in step (3) is assigned to

the bond identified in step (2).

(5) The bond (as well as the adjacent pore) eventually

invaded is that which is the first to be completely

drained among the bonds selected in step (2).

(6) The phase distribution within the network is up-

dated.

The threshold capillary pressure of a bond (step (2))

is classically expressed as

Pcth ¼
2c
‘

ð2Þ

where ‘ is the width of the considered bond.

At this stage, it is interesting to note that Pcth is a

function of the surface tension c and thereby of the

temperature since c varies with temperature. Hence, in

the presence of thermal gradients, the temperature de-

pendence of Pcth introduces a coupling between the heat

transfer and the invasion process. A second modification

induced by the presence of thermal gradients concerns

the computation of the evaporation flux (step (3)) from

the computation of the liquid vapor partial pressure

in the gas phase. Under isothermal conditions, the

equilibrium vapor partial pressure on the menisci is

a constant (fixed by the imposed temperature). As the

equilibrium vapor partial pressure is a function of tem-

perature, the boundary condition on the menisci for the

partial pressure field computation varies spatially in the

presence of thermal gradients. This represents a coupling

between the mass and heat transfers (since in turn the

heat transfer depends on the evaporation flux). Thus,

here, the transport by diffusion in the gas phase is ex-

pressed in terms of the vapor partial pressure. Assuming

a quasi-steady transport, the equation to be solved over

the gas phase reads,

r D
P

P � Pv

Mv

RT
rPv

� �
¼ 0 ð3Þ

where D is the binary diffusion coefficient of the vapor in

gas phase, P the gas phase total pressure, Pv the vapor

Fig. 2. 2D pore space square network of bonds (throats) and

sites (pores).
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partial pressure, R the universal gas constant, Mv the

vapor molecular weight and T the temperature. Eq. (3)

is discretized over the gas phase domain by adapting a

standard finite volume technique [15]. Assuming a one-

dimensional transport in each bond, this leads to express

the mass flux balance on each site ij of the network oc-

cupied by the gas phase as,

Fn þ Fs þ Fw þ Fe ¼ 0 ð4Þ

where subscripts n, s, w, e refer to the first neighbour top

(north), bottom (south), left hand side (west) and right

hand side (east) nodes of node ij. The discretized form of

the flux reads:

Fi ¼ D‘ie
Mv

RT
Pi � Pij

a
when neighbour site i is a gas node

Fi ¼ D‘ie
Mv

RT
Psat � Pij

ð1� bÞa=2 when neighbour site i is a liquid node

where e is the thickness of the network, Psat the equi-

librium vapor partial pressure, ‘i the width of the bond

joining site ij to neighbour site i while ð1� bÞa=2 is the

distance between site ij and the meniscus located at the

entrance of the adjacent bond (when neighbour pore i is

liquid). At the interfacial boundary (open edge of net-

work), the vapor mass flux at the entrance of an inter-

facial bond is expressed as

Fe ¼ h‘eðPv � Pv1Þ ð5Þ

where Pv is the vapor partial pressure at the considered

interfacial site and Pv1 is the vapor partial pressure in

the surrounding atmosphere. The mass transfer coeffi-

cient h is estimated assuming a diffusive layer of thick-

ness d at the interfacial boundary of the network, i.e. Fe
is in fact computed as

Fe ¼ D
Mv

RT
‘e

ðPv � Pv1Þ
d

ð6Þ

with d ¼ a=10, i.e. the external diffusive transfer is 10

times as effective as the internal diffusive transfer over

the lattice spacing a. This corresponds roughly to an

external mass boundary layer of thickness a=10, i.e. 0.1
mm for the simulations discussed in Section 4. The

system resulting from the discretization is solved by a

conjugate gradient method. More details on the com-

putation of the transport by diffusion on a network can

be found in [14].

Naturally, an important new feature of the present

model is the computation of the temperature field at

each step of the invasion. Compared to the computation

of the diffusive transport in gas phase the essential dif-

ference is that the thermal transport takes place not only

within the pore space but also within the solid phase. As

in previous pore network models including heat transfer

[16,17] the energy equation is therefore discretized over a

network twice finer than the pore space network, so that

nodes of thermal network are located in the solid phase,

as shown in Fig. 3. For the situations considered in the

present paper (temperature well below the boiling tem-

perature), heat transport by convection is negligible

within the porous medium. Assuming a quasi-steady

conductive heat transfer, the energy equation to be

solved over the thermal network at each step of the in-

vasion simply reads

rðkrT Þ ¼ 0 ð7Þ

where the thermal conductivity k depends on the loca-

tion within the network. As the solid phase is formed by

isolated grains in the 2D pore space network model (see

Fig. 2) some approximation should be made in order to

model the solid phase as a connected one for the con-

ductive heat transfer. In fact as shown in Fig. 3, there

are five types of bond in the thermal network: (a) the

bonds between two nodes located in the liquid phase, (b)

the bonds between two nodes located in the gas phase,

(c) the bonds joining a node in the gas phase to a node in

the solid phase, (d) the bonds joining a node in the liquid

phase to a node in the solid phase, (e) the bonds where

a meniscus is located. For simplicity, the bonds corre-

sponding to (a) and (d) are assigned k�
l as thermal con-

ductivity and the bonds corresponding to (b) and (c) k�
v,

where k�
l and k�

v are effective conductivities correspond-

ing to the porous medium saturated by liquid and vapor

respectively. It could be pointed out that the use of ef-

fective thermal conductivities is not consistent with the

scale of description of the network model since effective

conductivities are traditionally defined at Darcy�s scale.
In the context of our essentially qualitative study, using

effective conductivities should be regarded here as a sim-

ple manner of introducing thermal connections within

the solid phase. Using grain level conductivities, which

was found to be a satisfactory procedure in a previous

work [17] is in fact conventional in such models (e.g.

Fig. 3. Thermal network.
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[16]) and is therefore used here again. k�
l and k�

v are es-

timated according to a parallel arrangement model,

k�
i ¼ eki þ ð1� eÞks i ¼ l; v ð8Þ

where e is the porosity, kv, kl, ks are the thermal con-

ductivities of the vapor, liquid and solid phases respec-

tively. Again, we only need reasonable estimates of the

thermal conductivity of the thermal network bonds. Any

other reasonable approximations of the thermal con-

ductivities could have been used as well. Adapting finite

volume discretization concepts leads to express the heat

flux balance on each site ij of the thermal network as,

/n þ /s þ /w þ /e ¼ Sij ð9Þ

with Sij ¼ 0 for nodes that are not neighbour of a me-

niscus. When there is no meniscus located between two

nodes, the discretized flux between the two nodes is ex-

pressed as

/i ¼ k� ðTij � TiÞ
a=2

si i ¼ n; s;w; e ð10Þ

where k� ¼ k�
l or k�

v depending on the fluid occupying the

involved bond of the pore space network, si is the ex-

change surface between the two nodes (see Fig. 3).

Subscripts n, s, w, e refer here to the first neighbour top

(north), bottom (south), left hand side (west) and right

hand side (east) nodes of node ij on the thermal network.

When a meniscus is present between two nodes, the

discretization is a little bit more involved. Consider for

instance the case depicted in Fig. 4. On the meniscus,

the heat flux balance reads

k�
v

oT
ox

����
v

�
� k�

l

oT
ox

����
l

�
‘e ¼ DhvapF ð11Þ

where Dhvap is the enthalpy of vaporization per unit

mass, F is the evaporation mass flux at the meniscus.

The discretized form of Eq. (11) is written as

k�
v

ðTv � TmÞ
ð1� bÞa=2

�
� k�

l

ðTm � TlÞ
ba=2

�
‘e ¼ DhvapF ð12Þ

where Tm is the temperature at the meniscus. From the

above equation, one can express Tm as a function of Tl,
Tv and F . This leads to the following expressions for /e

(node ‘‘l’’), /w (node ‘‘v’’), Sle (contribution to source

term S in the heat flux balance equation for node ‘‘l’’)

and Svw (contribution to source term S in the heat flux

balance equation for node ‘‘v’’)

/e ¼
k�
l ‘e
dl

1

 
� k�

v

dv

�
þ k�

l

dl

��1 k�
l

dl

!
Tl �

k�
l ‘e
dl


 k�
v

dv

� 
þ k�

l

dl

��1 k�
v

dv

!
Tv ð13Þ

/w ¼ k�
v‘e
dv

1

 
� k�

v

dv

�
þ k�

l

dl

��1 k�
v

dv

!
Tv


� k�
v‘e
dv

k�
v

dv

� 
þ k�

l

dl

��1 k�
l

dl

!
Tl ð14Þ

Sle ¼ � k�
l ‘e
dl

k�
v

dv

�
þ k�

l

dl

��1 DhvapF
‘e

ð15Þ

Svw ¼ � k�
v‘e
dv

k�
v

dv

�
þ k�

l

dl

��1 DhvapF
‘e

ð16Þ

where dv ¼ ð1� bÞa=2 and dl ¼ ba=2.
Regarding the conditions at the boundaries of the

thermal network, zero flux conditions are imposed on

the lateral edges whereas the temperature is imposed on

the top and bottom edges (T ¼ Tt and T ¼ Tb respec-

tively). This is of course only an approximation of the

heat transfer problem at the top boundary, which is,

however, consistent with the fact that the evaporation

fluxes are small in our simulations. The system resulting

from the discretization is solved by a conjugate gradient

method.

Taking into account the thermal gradients finally

leads to the following algorithm:

(1) Every liquid cluster present in the network is identi-

fied.

(2) The evaporation flux at the boundary of each cluster

is computed.

(3) The temperature field is computed.

(4) The bond connected to the already invaded region

which has the lowest threshold capillary pressure is

identified for each cluster.

(5) For each cluster, the mass loss corresponding to the

evaporation flux determined in step (2) is assigned to

the bond identified in step (4).

(6) The bond (as well as the adjacent pore) eventually

invaded is that which is the first to be completely

drained among the bonds selected in step (4).
Fig. 4. Thermal network, example of bond containing a me-

niscus.
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(7) The phase distribution within the network is up-

dated and the procedure is repeated until a specified

number of bonds has been invaded.

Owing to the heat and mass transfer coupling, an

iteration procedure should be used for steps (2) and (3).

However for the situations considered in the present

paper, the change in the temperature field is small be-

tween two invasions. Therefore the iteration procedure

need not to be enforced and it is sufficient to use the

temperature of the preceding stage for computing the

evaporation flux of step (2).

3. Theoretical aspects

Before discussing the simulations, it is interest-

ing to explore the influence of thermal gradients on the

invasion from a theoretical standpoint. As discussed

in Section 1 the capillary pressure is constant spatially in

the absence of significant gravity and viscous forces (IP

domain). Thus, for a perfectly wetting liquid,

Pc ¼
2c
r
¼ constant ð17Þ

where r is the local radius of curvature of the menisci

(r � ‘=2). In the presence of thermal gradient, Eq. (17)

implies that the radius of curvature of the menisci varies

spatially since the surface tension c depends on tem-

perature. Assuming for simplicity, a uniform bond width

distribution in the range ½‘min; ‘max
, we can express the

fraction p of accessible bonds corresponding to Pc as

p ¼ ‘max � 2r
R

ð18Þ

where R ¼ ‘max � ‘min.

As c varies spatially in the problem under study, we

deduce from the above equations,

dp
dz

/ � 1

R
dc
dT

dT
dz

ð19Þ

where z is the spatial coordinate directed from the open

edge towards the bottom edge of the network. Hence, in

this problem, the tension surface gradients induced by

the thermal gradient impart a gradient in p. As discussed

in Section 1, we can distinguish two different global

patterns, depending on whether invasion is in a stabi-

lizing gradient (i.e. dp=dz < 0, that is with the chosen

system of coordinates ðdc=dT ÞðdT=dzÞ > 0), or a desta-

bilizing gradient (dp=dz > 0, that is ðdc=dT ÞðdT=dzÞ <
0). For water (as well as for the other liquids), the sur-

face tension decreases with increasing temperature, i.e.

dc=dT < 0. Therefore, we expect an IP process in a de-

stabilizing gradient when dT=dz > 0 and stabilizing

gradient patterns when dT=dz < 0.

3.1. Influence of disorder

Eq. (19) indicates that the probability gradient de-

pends not only on the surface tension gradient but also

on the disorder R. More precisely, Eq. (19) shows that

the effect of surface tension gradient will be significant

only if the disorder is not too large. Thus, for porous

materials characterized by broad pore size distribution,

the effect of surface tension gradients can be expected

to become negligible, and IP patterns are expected (we

recall that the influence of gravity or viscous effects is

ignored in this analysis).

3.2. Order of magnitude estimates

Consider the case of porous medium saturated by

water with temperatures in the range 20–50 �C. As can

be deduced from Fig. 5 showing the evolution of surface

tension as a function of temperature, dc=dT � �0:17

10�3 N/m/�C. Previous simulations for fronts stabilized

by gravity ([5]) indicate that dp=dz� (where z� ¼ z=a)
must be of the order of 10�3 for observing significant

gradient effects on networks of similar size as those used

for the simulations presented hereafter. According to

Eq. (19), this leads to temperature gradient dT=dz� of

the order of 0.2 �C/lattice unit (assuming the same dis-

order as in the above-mentioned simulations), that is of

the order of 1 �C/cm for a lattice spacing of 10�3 m.

4. Simulations

Evaporation of pure water into air is considered in

the simulations, so that the values of all physical prop-

erties (D, Mv, c, etc.) relative to the fluids are those

corresponding to the air–water system.

Fig. 5. Water surface tension as a function of temperature.
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4.1. High thermal conductivity limit

When the thermal conductivity of the solid phase is

high, the porosity not too high and the solid phase well

connected, then the effective thermal conductivity of the

regions saturated by liquid and that of the regions in-

vaded by the gas phase become comparable. In this

limit, for simplicity, we can reasonably assume that the

effective thermal conductivity is independent of the sat-

uration. Moreover, if we neglect the heat transfer asso-

ciated with the phase change (this assumption will

be discussed further in Section 4.2), the solution of

the thermal problem becomes trivial (T ¼ ððTb � TtÞ=
LÞzþ Tt). In this limit, we do not need to solve the

thermal problem numerically and can therefore perform

simulations on much larger networks than those that

can be reasonably considered when comptutations of the

temperature field must be carried out (we recall that the

thermal lattice contains twice as much computation

nodes compared to the pore space lattice). Therefore,

this limit enables one to gain insight into the influence of

the thermal gradient and disorder for a much less

computational effort than for full simulations. The

simulations discussed in this section are summarized in

Table 1 and have been performed over a 150
 150 pore

network (with a lattice spacing a ¼ 1 mm). The average

bond size was 0.30 mm. The phase distributions ob-

tained for a weak disorder (R� ¼ 0:03) are shown in Fig.

6. In accordance with the theoretical prediction the

phase distributions obtained for dT=dz > 0 are char-

acteristic of IP in a destabilizing gradient (IPDG) pat-

terns. IPDG patterns in drying are discussed in [6].

There are three main steps in the invasion: the single

branch growth (left hand side top image in Fig. 6), the

invasion front step, the disconnected cluster erosion

step. The left hand side bottom image in Fig. 6 cor-

responds to the end of step (2). Patterns for dT=dz < 0

(right hand side images in Fig. 6) are characteris-

tic of IPSG in drying, i.e. a traveling stabilized two

phase region between a fully saturated region and a dry

region.

As can be seen from Fig. 7, the marked differences

between invasion in a positive thermal gradient and a

negative thermal gradient discussed above completely

disappear for a sufficiently large disorder (in agreement

with the theoretical predictions). In fact, drying IP pat-

terns are recovered in this case.

Fig. 8 shows the evolution of the overall saturation as

a function of time for the various cases considered in this

section. When the disorder is low enough for the sign of

the thermal gradient to influence the invasion (curves

corresponding to R� ¼ 0:03 in Fig. 8), the drying kinetics

are greatly affected. As can be seen from Fig. 8, drying

is much faster when an IPDG pattern develops (i.e.

dT=dz > 0). This is kind of paradoxical if one considers

that the open edge of network is 15 �C colder for the

case dT=dz > 0 compared to the case dT=dz < 0 but in

fact consistent with the phase distributions depicted in

Fig. 6 since the dry-out of the open edge region of net-

work occurs much later for dT=dz > 0. Hence, this

indicates that blowing a colder air than the initial tem-

perature sample can lead to a much faster drying than

blowing a warmer air when the disorder of the sample is

low enough for IPDG pattern to develop. As illustrated

in Fig. 8, this is the opposite which is true when the

disorder is sufficient for the invasion pattern to be not

affected by the presence of thermal gradient. These re-

sults are the consequence of the interplay between the

external mass transfer (see Eqs. (5) and (6)) and the

evolution of the liquid phase distribution at the network

interface. As explained in the comments below Eq. (6)

and in accordance with the general features of convec-

tive drying, the external mass transfer is significantly

more effective than the diffusive transport in gas phase

within the network. As a result, maintaining wet the

surface of the network in the case dT=dz > 0 overcom-

pensates here the fact that the saturation vapor partial

pressure is significantly lower for a colder temperature.

This can be simply illustrated assuming that the evapo-

ration front is located at a distance di from the interface

within the material. Then, according to Eq. (6) and as-

suming for simplicity Pv1 ¼ 0, the evaporation flux

scales as,

Fe /
Pvs

ðd þ diÞ
ð20Þ

Considering two different temperatures T1 and T2 with

T1 < T2, one deduces from Eq. (20) that

FeðT1Þ
FeðT2Þ

/ ðd þ diðT2ÞÞ
ðd þ diðT1ÞÞ

PvsðT1Þ
PvsðT2Þ

ð21Þ

Assuming now that diðT1Þ ¼ 0 (the interface is wet for

the coldest temperature), it is obtained

FeðT1Þ
FeðT2Þ

/ ðd þ diðT2ÞÞ
d

PvsðT1Þ
PvsðT2Þ

ð22Þ

which shows that

FeðT1Þ
FeðT2Þ

> 1 when
ðd þ diðT2ÞÞ

d
PvsðT1Þ
PvsðT2Þ

> 1 ð23Þ

Table 1

Simulations performed in the high conductivity limit

Tt (�C) Tb (�C) dT=dz (�C/cm) R�

S1 20 35 þ1 0.03

S2 35 20 �1 0.03

S3 20 35 þ1 0.5

S4 35 20 �1 0.5
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Eq. (23) can be still simplified assuming the external

transfer resistance is small compared to the internal one,

i.e. d � di. This finally leads to

FeðT1Þ
FeðT2Þ

> 1 when
diðT2Þ

d
PvsðT1Þ
PvsðT2Þ

> 1 ð24Þ

which clearly indicates that a colder interface tempera-

ture can lead to higher evaporation rates provided that

(i) the surface remains wet when cold (i.e. diðT1Þ ¼ 0 for

a IPDG pattern) and (ii) the internal transfer resistance

(associated with the development of a IPSG pattern) is

sufficiently greater than the external transfer resistance

(i.e. diðT2Þ > dPvsðT2Þ=PvsðT1Þ).

4.2. Influence of thermal conductivity contrast

In contrast with the preceding section, we explore in

this section situations in which the apparent thermal

conductivity of the regions saturated by the gas phase is

significantly lower than the apparent thermal conduc-

tivity of the regions saturated by the liquid. The thermal

conductivity contrast (between the gas saturated and

liquid saturated regions) can be more or less important

depending on the porosity, the connectivity of solid

matrix and the thermal conductivity of the solid phase.

Our aim being to gain some insight into the influence

of the thermal conductivity contrast, we consider simply

Fig. 6. Phase distribution for 5000 and 10 000 invaded bonds for a weak disorder (R� ¼ 0:03). Liquid phase in black, gas phase in

white. Vapor escapes through top edge of network. Images on the left hand side column are for dT=dz ¼ 1 �C/cm. Right hand side

images are for dT=dZ ¼ �1 �C/cm.
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the case where k�
v is 10 times as small as k�

l . More spe-

cifically, we adopted the values k�
v ¼ 0:2 W/m/�C and

k�
l ¼ 2 W/m/�C. These values correspond to the sand

used by Crausse [9,18] in his experiments. In order to

reduce the computational time, we consider a smaller

network (100
 100) but impose a weaker disorder

(R� ¼ 0:005) than in Section 4.1 (see Section 5 for a

discussion about the factors controlling the occurrence

of IPG patterns in the presence of thermal gradients). As

before, we compare the results obtained for positive

thermal gradients and negative thermal gradients. More

precisely, the simulations were performed for the con-

ditions summarised in Table 2. As can be seen from

Table 2, full simulations (i.e. including the computation

of temperature field at each step of invasion) were also

performed for high thermal conductivities in the absence

of contrast. The results obtained for this case are fully

consistent with the results discussed in Section 4.1. In

particular, the temperature fields are only marginally

affected by the change of phase. As a result, these fields

are very close to those considered in Section 4.1. As an

example, this is illustrated in Fig. 9 which shows the

temperature field obtained for simulation S5 when 5000

bonds have been invaded. The phase distributions for

simulations S5 (resp. S6) are not significantly different

from those obtained for simulation S7 (resp. S8). The

phase distributions corresponding to S7 and S8 are

shown in Fig. 10. As predicted, IPDG patterns are ob-

Fig. 7. Phase distribution for 5000 and 10 000 invaded bonds for a greater disorder (R� ¼ 0:5). Liquid phase in black, gas phase in

white. Vapor escapes through top edge of network. Images on the left hand side column are for dT=dz ¼ 1 �C/cm. Right hand side

images are for dT=dz ¼ �1 �C/cm.
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tained for a positive thermal gradients and IPSG pat-

terns for negative ones. Naturally, when the thermal

conductivity contrast is marked, the temperature field

differs from the simple conduction field in an homoge-

neous medium. This is illustrated in Fig. 11 which shows

examples of temperature fields corresponding to simu-

lations S7 and S8. Interestingly, one observes that the

thermal gradient is non-constant along z contrary to the

situations discussed previously. For positive gradients

(IPDG pattern), the thermal gradients are greater than

the average gradient in the invaded region. This may

favor the development of an IPDG pattern (i.e. lead for

example to a maximum size of trapped clusters lower

than for a weaker thermal conductivity contrast). On

the contrary, for negative gradients (IPSG pattern) the

thermal gradients tend to be lower than the average

gradient in the invasion region. This may limit the de-

velopment of an IPSG pattern (i.e. lead for example to a

greater average extension of the front) compared to

cases where the thermal conductivity contrast is lower.

Our simulations indicate, however, that this effect re-

mains marginal for thermal conductivity contrast up to

10 (the slight differences observed between the phase

distributions of simulations S5, S6 (not shown in this

paper) and S7, S8 are, however, consistent with the

above discussion).

5. Discussions

It could be pointed out that the values of the disorder

parameter R associated with significant effects of ther-

mal gradient orientation for the simulations presented in

Section 4 are quite small. The value R� ¼ 0:03 (Section

4.1) corresponds to a relative variation of only 10% in

the pore size whereas the value 0.005 (Section 4.2) cor-

responds to a relative variation still smaller (�2%!).

However, it may be observed that porous materials with

Fig. 8. Evolution of overall saturation as a function of time

(thermal gradients are expressed in �C/cm).

Table 2

Simulations performed with full computation of thermal field

Tt (�C) Tb (�C) dT=dz (�C/cm) k�
v (W/m/�C) k�

l (W/m/�C) R�

S5 22.5 32.5 þ1 50 50 0.003

S6 32.5 22.5 �1 50 50 0.003

S7 22.5 32.5 þ1 0.2 2.0 0.003

S8 32.5 22.5 �1 0.2 2.0 0.003

Fig. 9. Example of temperature field computed for a low

thermal conductivity contrast (simulation S5 for 5000 invaded

bonds). Contrary to remaining of paper z is oriented from

bottom to top (open edge) in the figure.
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very narrow pore size distribution are not uncommon.

As mentioned in the introduction, the relative variation

in grain size for the sand used by Crausse [9] is of the

order of 25%. For the chalk used in te experiments re-

ported in [19], most pore sizes are in the range 0.1–0.6

lm whereas the mercury invasion was found to be

controlled essentially by one pore size for the rocks

studied by Tournier [20]. Other examples of materials

with narrow pore size distribution are also reported in

the book of Dullien [21]. Nevertheless, the disorder in

our simulations may still sound unrealistically small. It

could be argued that R reflects the disorder in the throat

size and not the disorder in the pore size but it is more

important to recognize that R is not the sole parameter

controlling the occurrence of IPDG or IPSG patterns.

From previous works (see [5] and references therein) it is

known that the characteristic scale LT of a front (ap-

proximately liquid–vapor region of limited extension)

associated with gradient percolation effects can be ex-

pressed as power-law of the occupation probability

Fig. 10. Phase distribution for 2500 and 5000 invaded bonds (simulations S7 and S8). Liquid phase in black, gas phase in white. Vapor

escapes through top edge of network. Images on the left hand side column are for dT=dz ¼ 1 �C/cm. Right hand side images are for

dT=dz ¼ �1 �C/cm.
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gradient, that is in the present context (taking into ac-

count Eq. (19)),

LT

a
/ c�1

ðR=aÞ
dc
dT

����
���� dT
dz�

����
����

� ��a

ð25Þ

where z� ¼ z=a and a is a positive universal exponent

that only depends on the dimensionality of the lattice

(a ¼ 0:52 in two dimensions as shown in [5]).

For a given porous medium sample of size L, one
therefore expects IP pattern when LT > L and IPG pat-

terns induced by thermal gradients when LT < L (we

recall we assume here Lg > L and Lcap > L so that gra-

dient percolation effects induced by gravity or viscosity

effects are not considered in the discussion). Hence, IPG

patterns will be observed when

m
c�1

ðR=aÞ
dc
dT

����
���� dT
dz�

����
����

� ��a

<
L
a

ð26Þ

where m is a numerical prefactor that solely depends on

the porous medium microstructure. The various patterns

that can be expected are summarized in Fig. 12. Again,

the diagram shown in Fig. 12 is pertinent as long as Lg

and Lcap are larger than LT. Consistently with Eq. (26),

IPG patterns with the 100
 100 network of Section 4.2

were obtained for a smaller disorder than the one im-

posed for the simulations over the 150
 150 networks

of Section 4.1 (the lattice spacing being the same and the

thermal gradients being of the same order of magni-

tude). More interestingly, Eq. (26) indicates that IPG

patterns due to thermal gradients could be observed for

Fig. 11. Temperature fields corresponding to the phase distributions depicted in Fig. 10 Contrary to remaining of paper z is oriented
from bottom to top (open edge) in the figure.
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networks of significantly larger disorders than those

considered in Section 4 provided that the thermal gra-

dient and/or the sample size L are sufficiently large.

6. Conclusions

The primary objective of this paper was to present a

pore network model of drying in the presence of thermal

gradients.

A second objective of the present paper was to il-

lustrate through pore network simulations the effect of

the surface tension gradients induced by thermal gra-

dients on the phase distribution during drying. The

numerical results are consistent with the expected in-

fluence of the surface tension gradients associated with

the spatial variation of temperature. In agreement with

the theory of IP in a gradient, IPSG or IPDG patterns

can be expected depending on the sign of the thermal

gradient. As increasing the porous medium disorder has

an effect that is equivalent to an increase in capillarity,

IPSG and IPDG patterns are expected for sufficiently

weakly disordered porous medium. This has been also

illustrated through the simulations. Finally, a qualitative

drying phase diagram has been proposed for delineating

the various patterns that are expected as a function of

thermal gradient and disorder parameter. This diagram

is pertinent to situations where occupation probability

gradients induced by viscous or gravity effects are neg-

ligible. On the basis of the present work on the effect of

thermal gradients and previous works on the influence of

viscous or gravity effects (e.g. [5] and references therein),

it would not be difficult, however, to delineate the var-

ious patterns that can be expected according to the rel-

ative influence of disorder, thermal gradients, viscous,

gravity and capillary effects.

The results presented also indicate the possibility of a

somewhat paradoxical convective drying situation when

thermal gradients and disorder are such that IPG pat-

terns develop. In this case contrary to more conven-

tional situations, it may be much more efficient to blow

an air colder than the porous medium initial tempera-

ture.

In this paper, only 2D networks were considered. It is

well known that there exist significant differences be-

tween IP in 2D and 3D systems. In this respect, it would

be interesting to develop a 3D version of the present

pore network model, especially for studying the influ-

ence of thermal gradients on drying rates. However, this

does not invalidate the relevance of the main qualitative

results of the present paper to 3D systems. Therefore,

the phase diagram of Fig. 12 applies also to 3D systems

(for first insights into drying in 3D within the frame-

works of the network approach and IP theory (see

[22,23]).

The present version of the pore network model can

certainly be improved. Regarding the study of drying

rates, it would be interesting to take into account the

liquid film flows in the model since it has been shown

that they can affect the drying rates [24]. In the presence

of thermal gradients, local liquid condensation can

occur within the pore space, (e.g. [25] and references

therein). This effect is partly included in the presence

version of the model but without simulating local re-

imbibition (it is implicitly assumed that the re-imbibition

phenomena are negligible for the drying conditions

considered in the present study). Modelling imbibition

on pore networks during drying remains a challenge that

would deserve future works (see however [8]). It can

reasonably be surmised that film flow and local imbib-

ition effects influence only marginally the occurrence of

various patterns discussed in the present work. Never-

theless, it would be certainly interesting to perform

experiments aiming at validating the findings of the

present paper as well as the results discussed in [8]. Work

in this direction is in progress.
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